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Abstract: Advances in research technologies make high-dimensional data available, and the most 
interesting research has been conducted on variable selection. The Bayesian variable selection is gaining 
interest in different fields because of its vast literature. In this paper our main objective is to investigate 
Bayesian variable selection (BVS) in the context of a random effect model using various prior for 
variance components in the spike-slab prior approach.
The spike-slab prior is viewed as a mixture distribution, where some regression coefficients concentrate 
around zero (spike), and the remaining coefficients have a probability of not being zero values (slab). 
Generally, for building a model, the normal distribution is considered a prior for regression coefficients 
in the spike-slab components. When the variance is unknown in normal, it could be estimated by 
extending the model into a hierarchical model. In a hierarchical model, different prior distributions 
have been proposed for the variance components. Generally, the prior distributions chosen for the 
variance component are uniform, inverse gamma, and half-Cauchy distribution. Both simulation and 
real data will be studied to investigate and evaluate how good the chosen distribution for variance 
components is in the random effect model for the spike-slab approach. 
The application of the BVS with spike-slab prior to microarray data from ADNI (Alzheimer’s Disease 
Neuroimaging Initiative), in a logistic regression setting (Alzheimer’s Disease vs. Control) demonstrated 
a notable degree of dimensionality reduction. These selected genes maintain lower misclassification error 
percentages with higher area under the receiver operating characteristic curve( AUC-ROC) values in 
different machine-learning algorithms. This discovery opens up new avenues for in-depth exploration 
and investigation, potentially leading to the identification of biomarkers for Alzheimer’s Disease(AD).

Introduction

The high-dimensional data became available in the modern era, due to modern 
advancements in data storage and computational power. High-dimensional data is 
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mostly studied topic in statistics that are defined as when the observations in the data 
set are smaller than the total number of predictors. The most interesting problem arises 
in selecting a sub-set of covariates among the many covariates related to the outcome of 
interest. This is known as “variable selection” or “model selection” and is considered a 
challenging step in statistics. Statisticians are concerned about variable selection because 
it is hard to satisfy prediction accuracy and interpretability of the model simultaneously. 
When the prediction is the aim, we mainly focused on the fitting good model without 
regard to the number of covariates. Conversely, we try to select fewer covariates for 
interpretability purposes, which will provide a better unknown relationship between 
covariates and response. So, the variable selection provides a solution for a specific 
purpose, and we should not regard it as a general purpose (Rockova, 2013). 

We may increase the model’s precision, lessen its complexity, and save time and 
resources by adding a smaller number of variables to the model. There are numerous 
methods available for variable selection in Bayesian and classical literature. 

Classical statisticians have studied variable selection extensively. Classical methods 
include forward selection, backward selection, and stepwise selection. These methods 
start with either a full or null model, and then each step variables are deleted or 
added to the model till getting the best model. In the forward selection approach, 
the variables are added gradually to the model to improve the model’s fit based on 
predefined criteria, such as AIC, BIC, etc. On the other hand, backward elimination 
starts with a model that includes all potential covariates and iteratively removes the 
least significant covariates based on a specified criterion. Stepwise selection combines 
elements of forward selection and backward elimination. At each step, it considers both 
adding new covariates that improve the fit and removing existing covariates that no 
longer contribute significantly to the model. Besides, introducing the penalized term 
in the model, known as shrinkage methods, is another useful approach for variable 
selection. The most well-known shrinkage variable selection methodologies in classical 
statistics are the Least Absolute Shrinkage and Selection Operator (LASSO), ridge, and 
a combination of LASSO and ridge (elastic net).

The LASSO could be used simultaneously as a variable selection method and 
parameter estimation that was proposed by (Tibshirani, 1996) . Usually, LASSO adds 
“L1 norm” |bj| as a penalty term in the likelihood function. On the other hand, another 
shrinkage method is ridge regression, which shrinks the parameter by the size of the 
regression coefficients. It introduces the “L2 norm”  in the likelihood function instead 
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of “L1 norm” |bj|. Ridge regression shrinks the parameter towards zero by a constant 
factor (proportionally). The elastic-net method compromises between LASSO and 
ridge penalties (Zou & Hastie, 2005). Unlike the ridge penalty, the elastic net solution 
is sparse but has more non-zero parameters than the lasso penalty. Although selecting 
a subset of variables using forward or backward methods is computationally feasible, 
these methods are sensitive to the sample size. The prediction accuracy is reduced for 
small changes in the data set and selecting a completely different model. The penalized 
methods are mostly utilized for ill-conditioned data sets where the total number of 
observations is less than the number of covariates as well as existing multicollinearity 
among covariates. The main drawbacks of these methods are that the estimated 
parameter in LASSO can’t exceed the number of observations. In contrast, the ridge 
can’t select parameters automatically because all predictor estimates are non-zero in 
the model. When the data are correlated, LASSO tends to select one covariate in a 
group and discard the remaining covariates. Moreover, for a large number of covariates, 
shrinkage parameter estimation is more expensive for both LASSO and ridge.

 The variable selection problem in Bayesian statistics is considered a parameter 
estimation where marginal posterior probability determines the inclusion of the 
variables into the model (O’hara & Sillanpää, 2009) . The Bayesian procedure for 
variable selection frequently employs the discrete choice and continuous shrinkage 
prior. The spike-slab prior is the discrete choice, employing a mixture distribution. In 
this mixing distribution, the slab is a normal distribution with a non-zero mean and 
variance, and the spike is a probability mass focused around zero. In the model, the slab 
component represents the included predictors, whereas the spike component displays 
the predictors that would not be included. This method was initially proposed by 
Mitchell and Beauchamp (Mitchell & Beauchamp, 1988) with concentration at zero 
and uniform diffuse slab component. The inclusion probability determines sparsity 
in the model; suggests Bernoulli probability with 0.5 (George & McCulloch, 1993). 
Later, many authors adjusted this general approach by incorporating the different 
structures of the variable inclusion probability, the continuous prior distribution 
for slab components, and the sampling strategy for fitting the model. On the other 
hand, the global-local (GL) shrinkage framework (Polson & Scott, 2010) includes 
the most popular continuous shrinkage prior. Generally, in GL shrinkage strategy, 
global parameters have a large mass around zero to allow more shrinkage, whereas 
most local parameters leave the unshrunk by considering heavy-tailed distribution. 
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The Horseshoe, Normal Gamma, Dirichlet-Laplace, and Horseshoe+ are the most 
common continuous shrinkage prior within GL framework (Carvalho et al., 2010) 
(Brown & Griffin, 2010) (Bhattacharya et al., 2015) (Bhadra et al., 2017).

The most common prior in the GL technique for variable selection is the horseshoe 
prior, while significant covariates are estimated using the half-Cauchy distribution. But 
in most cases, it’s difficult to determine the proper posterior distribution. In Bayesian 
variable selection, the literature is vast, and we will consider only spike-slab prior to 
this study.

The regression coefficients in the model could be fixed or random; in Bayesian 
analysis, fixed and random effect models can be expressed as a probability distribution. 
We consider the normal prior for the estimated regression coefficients in the Bayesian 
strategy. When the prior variance is fixed, the model is equivalent to the classical fixed 
effect model (O’hara & Sillanpää, 2009). For random effect, the model assumed 
parameters are drawn from the normal distribution with an unknown variance that 
would be estimated. This random effect model has advantages in tuning the parameter 
that will depend on the variance of the parameter. Through the hierarchical model 
concept, we can model this variance parameter. As a noninformative prior Inverse 
gamma and uniform distribution was used in modeling variance component (Browne 
& Draper, 2006), and Half Cauchy distribution was also used as a weakly informative 
prior. 

In Bayesian analysis, the Spike-slab prior approach—implemented by (Mitchell & 
Beauchamp, 1988) into the framework of linear regression—is most commonly used 
to select an important subset of variables. We address the following problem in this 
study: “the impact of the different prior distributions of variance parameters in “spike-
slab” approach for selecting significant covariates.” The main objective comparing 
spike-slab approaches for variable selection in random effect models by considering 
different prior in variance component. The Kuo-Mallick (K-M) and the Stochastic 
Search Variable Selection (SSVS) methods will be applied in spike-slab approach for 
variable selection. These methods will be compared based on following criteria: degree 
of sparsity in the model, impact of the sample size in variable selection, ill-conditioned 
data (number of covariates greater than number of sample size)

 Apart from these objectives, based on performance, one method will pick up 
specified prior variance components and will be applied in Alzheimer’s disease 
microarray data set to identify the most significant genes. Since this data set is related 
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to the classification problem, all simulations will be conducted based on logistic 
regression.

2. Methodology

2.1. Bayesian Variable Selection (BVS)

Generally, the Bayesian approach’s variable selection is straightforward based on 
model posterior probabilities. The model uncertainty is introduced by using the prior 
probabilities of each model along with the prior distribution of each parameter in the 
model. Baye’s theorem is used to calculate the posterior probabilities. Let’s consider 
there M competing models; the prior distribution for model m is P(m) , now for given 
data set y the posterior probability of model m is:

 

where, the marginal distribution of the m th model over all possible parameter values 
bm of the model m is . The best model is 
identified, which has the highest posterior probability. But there are some challenges in 
using Bayesian variable selection: prior probability, intractable likelihood and searching 
algorithm. 

The application of variable selection is crucial for understanding the characteristics 
of the observed phenomena and successfully recovering any sparse underlying structures 
in the data. For sparse data sets “Spike-Slab” prior approach gained popularity in 
selecting variables with an estimation of the parameters. That method combines two 
probability distributions: probability mass centered at zero (referred as spike) and a 
continuous distribution (such as a uniform or normal distribution) that represents 
the slab component. Most of the coefficients in the model are concentrated around 
zero, while only a small subset of coefficients deviates significantly from zero. This 
phenomenon is known as selective shrinkage.

2.2. Framework of BVS in Logistic Model

The Bayesian variable selection framework will be described using the logistic regression 
model. The latent indicator variables are used for each covariate in the Bayesian 
framework model with “Spike-Slab” prior. The posterior summaries depend on these 
latent variables. 
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Let’s consider there are p covariates  and n individuals in the model. 
The response or outcome of interest  for each individual is binary (0/1); it could be 
disease or control. In logistic regression, we will model the probability of an outcome 
(i.e.  based on the individual characteristics. The logit transformation 
of probability describes the linear relationship of the covariates with outcome. 
Mathematically the model is following, 

 

where, p denote the probability of success event and bi denote the regression coefficient 
associate with each covariates xi in the model. 

The variable selection problem for logistic regression is to find a smaller subset 
of the covariates which correctly classified or predicted the outcome of interest in the 
model. Selecting the regression coefficients bi that is zero can be viewed as the variable 
selection issue. So, each regression coefficient in the model could be placed on the 
“spike” part (i.e.: not significant) or the “slab” part (significant). We can introduce the 
indicator variable Ij in the model, where Ij=1 or 0 denotes j th covariates presence or 
absence in the model. For most methods, an additional auxiliary variable called effect 
size   is required in the model. Now when , then  and the 
interpretation is straightforward. The methods listed below vary based on bj since the 
variable bj can be interpreted in multiple ways when Ij = 0. 

Since there are p covariates in the model, 2p candidate models can be considered 
through indicator vector  Then, the main concern focuses on the 
complexity or sparseness of the model required to describe the relationship between 
outcome and covariates. One flexible approach is to define the model’s sparseness through 
prior probability  for variable inclusion.  

George and McCulloch (1993) suggested setting the inclusion probability to 0.5 
to make all models equiprobable. Although this probability may enhance the MCMC 
mixing and attractive to as a null prior, the model is biased to select about half of the 
predictors. This is not good for the model where a small subset of the covariates is likely 
to be required. So the choice of  value depends on the investigator’s analytic 
approach to pick the best prior probability. 

After building the model, the Markov Chain Monte Carlo (MCMC) algorithm 
fits the model. Using Gibbs sampler methods, the sample of regression coefficients and 
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indicator variables is generated from the joint posterior distribution. Fortunately, it 
is not required to calculate the posterior probability of all of the  possible models. 
With the help of MCMC, it becomes convenient to identify the sub-model that 
exhibits promising covariates by examining their high-frequency appearances within 
the Gibbs sample.

2.3. Bayesian Variable Selection Approach

Different Bayesian variable selection approaches are mentioned in the literature. 
Among these methods, we can mention Gibbs variable selection (GVS), Kuo and 
Mallick (KM), Stochastic Search Variable Selection (SSVS), reversible jump MCMC, 
adaptive shrinkage with Jeffreys’ prior or a Laplacian prior, and variable selection based 
on Zellner’s g-prior (Kuo & Mallick, 1998) (George & McCulloch, 1993) (O’hara & 
Sillanpää, 2009) (Lesaffre & Lawson, 2012). This study considers and investigates KM 
and SSVS in selecting a subset of variables with different prior for variance components 
in the random effect model. These two approaches are differed based on how they treat 
qj, bj and Ij. They can be readily implemented in the BUGS language since they are 
based on the Gibbs sampler. The following two sections are high-level descriptions of 
KM and SSVS methods.

2.4. KM Approach

Kuo and Mallick (1998) incorporated indicator variables as a parameter in the regression 
model to select the non-zero covariates in the model. It is a discrete process because 
each variable is retained or deleted from the model. In the Kuo-Mallick (KM) method, 
the significant regression coefficients bj set to the slab part and the corresponding 
predictors bj that has no relevance to the outcome set to the spike part (Fig: 1) Click 
or tap here to enter text.. The KM methods assume the independent prior for effect 
size  and indicator variables Ij, so we chose independent prior for each Ij and 
bj, such that . Now the linear relationship of covariates in the 
regression model is

 
This model could be considered as a discrete process where in each iteration of 

MCMC, predictors are either included or excluded from the model. The MCMC does 
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not require any tuning to fit the model. But the MCMC mixing might be poor when 
the prior bj is too vague and Ij = 0. The regression coefficients bj are seldom noticeable 
in regions where effect size qj has greater posterior evidence; therefore, the sampler 
hardly switches from Ij = 0 to Ij = 1

Figure 1: Bayesian Variable Selection through KM (left) and SSVS (right) approach
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2.5. SSVS Approach

The stochastic search variable selection (SSVS) was proposed by George and McCulloch 
(1993), where the probability was applied to select a subset of variables. The subset 
choices in this approach are determined by latent variables derived from a hierarchical 
normal mixture model. Unlike the KM approach, in SSVS, the spike has a narrower 
distribution concentrated around zero (Fig. 1). This is considered a more realistic 
assumption than assuming that regression coefficients do not have any effect on the 
outcome. When the indicator Ij = 0, the bj is drawn from the distribution concentrated 
around zero (spike), and the covariate has a minor effect on the outcome. On the other 
hand, when indicator Ij = 1, the bj is drawn from the slab part, and the covariate possesses 
a non-zero influence on the outcome, which suggests that it has to be accounted for 
in the model. So, the prior distribution of bj is affected by indicators, which violates 
independence assumptions of KM, i.e.  Generally, spike-slab 
prior to SSVS approach is written as follows,

 

where  represents the variance of the slab part, and for large  value with , the 
regression coefficients bj stay very close to zero. The parameter tuning is challenging 
since  requires a very small value while simultaneously avoiding 
concentration around zero. Unlike KM, the almost zero predictors are not removed 
from the model when  so each iteration of MCMC fits full models. This raises 
the computational expenses of MCMC for a large number of covariates.

3. Simulation Study

The data simulation process involves employing a logistic regression model, where the 
regression parameters are treated as random variables. For variable selection purposes, 
the KM and SSVS approach shall be applied in many settings of simulated data sets. 
In the Bayesian paradigm, different priors for variance components will be considered 
in both K-M and SSVS approaches for various settings of the simulated data. This 
simulation’s prime objective is to evaluate the efficacy of the KM and SSVS in a sparse 
model. Besides, we want to gain better advantages and disadvantages of each strategy in 
various contexts, such as when the data is ill-conditioned . Moreover, we try 
to pinpoint instances in which, for selecting a subset of variables, one approach could 
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be more suitable than another approach for the random effect model in the Bayesian 
paradigm. 

We generated the covariates from the standard normal distribution for this 
simulation study. We varied our sample size (n), number of predictors (p), and sparsity 
of the data-generating model to achieve our objectives. Let X represent standard 
normal predictors in the model with dimension n×p, where n = total sample size 
and p = total number of predictors. The model’s sparsity is introduced by a fixed 
number of non-zero covariates nzc out of the total p covarites in the logistic regression 
setup. Inverse logistic transformation is now used to convert the linear predictor 

 into probability. Then the response Y is 
generated from the Bernoulli distribution by using this probability 

 
In order to make a reliable comparison between KM and SSVS, we generated about 

50 datasets for each scenario with fixed values of n,p, and nzc. The random fluctuations 
or outliers of data sets in a particular data set would be lessened by averaging findings 
across the numerous data sets. 

The median probability model rule is used to select the significant covariates for 
both KM and SSVS approaches. We used the number of predictors as a criterion to assess 
the degree of sparsity attained by each methodology for evaluating each technique’s 
efficacy. We fix the total number of non-zero covariates nzc  in advance to compare 
the results with the true sparsity of the data-generating model. We repeated this fitting 
procedure over different datasets for fixed nzc and then compared the average number 
of predictors p identified by each method.

We can compare the accurate estimation of predictors selected by each technique 
and the true model sparsity. These results are presented in the column labeled P(%) in 
tables (Appendix A and B). In addition to evaluating the degree of sparsity, it is also 
important to know in identifying the true non-zero covariates in the model achieved 
by each method. To do this, we checked whether the covariates identified as non-zero 
by each method were indeed the non-zero covariates in the true model. The results are 
presented in the column labeled nzc (%) in tables (Appendix A and B). With respect 
to our objective, we run the following simulations plan by varying the total number of 
predictors p, sample size n, and the non-zero covarites nzc to compare the performance 
of both KM and SSVS with different prior for variance components.



Bayesian Variable Selection with Spike-Slab Prior in Random... | 51

• Degree of Sparsity: In this simulation, we fixed the total number of predictors 
p=20 and the sample size n = 60. The degree of sparsity imposed in the data set 
by selecting five different numbers of non-zero covariates nzc: 2, 5, 10, 15, 20. 

• Sample Size: To examine the sample size impact on variable selection, we 
repeat earlier simulation plan for different sample sizes: n = 60 and n = 100

• Ill-conditioned Data: For this simulation plans, number of observations n is 
smaller than the number of predictors p in the model, so we keep the sample 
size fixed n=60 while varying the number of covariates n = 60 to n = 100. 

The Bayesian variable selection methods often rely on Gibbs sampling, leading 
researchers to use BUGS or JAGS via the “runjags” package in R for computation. In 
our study, we used R and JAGS to explore the effectiveness of Bayesian variable selection 
in high-dimensional data, leveraging parallel processing for efficient simulations. 

Figure 2: Comparison between KM and SSVS approach in variable selection with different 
prior in variance component over different levels of sparsity when sample 

size greater than number of covariates
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These methods are compared based on the accuracy (i.e. how many true non-
zero covariates are identified) over the different levels of sparsity (Fig. 2). This 
accuracy percentage labeled as (nzc(%)) in Table A.1 shows that the percentage of 
identified correct predictors for KM methods is higher than the SSVS approach. 
Comparatively, the performance KM is slightly better in higher levels of sparse model 

 than in less sparse model  
Moreover, the gamma prior in variance components delivered better performance than 
the vague prior and Cauchy prior in selecting true non-zero covariates for both KM 
and SSVS approaches. Although the impact of the sample size is not well understood 
over different degree levels of sparsity for gamma and Cauchy prior, the performance 
gradually increased for vague prior (Fig. 2). This finding would suggest that the increased 
sample size has a greater impact on the posterior distribution than the prior distribution.

The simulation results for  are shown in the following Fig. 3. These 
simulations are planned for two settings where the number of non-zero covariates in 

Figure 3: Comparison between KM and SSVS approach in variable selection with different 
prior in variance component over different levels of sparsity when number of 

covariates greater than sample size
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the model are fixed at 10 and 20, while the total number of covariates increases from 
60 to 100. The performance of the KM and SSVS is quite similar in selecting non-zero 
covariates for different prior settings of variance components (see column p(%)) and 
nzc(%)).

The method’s performance is largely unaffected even with twice as many variables 
as the sample size. On the other hand, when we compare three different priors for 
variance, the percentage of correctly identified predictors for the gamma distribution is 
higher than other priors: vague and Cauchy.

In summary, from Figure 1 and 2, for a highly sparse data set, KM performs 
well than SSVS when , whereas both approaches have similar performance for 

. Due to the independence prior property of indicators variable and regression 
coefficients, the KM method is easier to implement than SSVS. Finally, we can use 
gamma distribution as a prior for variance components in the KM approach for 
variable selection from the logistic regression models. All the numerical results for the 
simulation are reported in the appendix.

4. REAL DATA ANALYSIS (Alzheimer’s Disease Neuroimaging Initiative)

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni. usc.
edu) is the source of the microarray data set for the disease. Michael W. Weiner, chief 
investigator of ADNI, launched this in 2003 as a private-public joint partnership. This 
database’s main goal is to provide data about Alzheimer’s Disease to researchers so they 
can better understand the condition and aid in its early identification. This data source 
is composed of different types of data: clinical data, imaging data (including MRI and 
PET images), genetic data, and biospecimen data. It is a large-scale, longitudinal study 
with more than 1500 participants aged 55 to 90. 

Blood samples from a cohort of 811 people participating in the ADNI WGS 
were used for gene expression analysis. Expression profiling was performed using the 
Affymetrix Human Genome U219 Array from Affymetrix (Santa Clara, CA). The 
Robust Multi-chip (RMA) Average normalization was applied as a preprocessing step 
for the unprocessed expression values derived from the CEL files. Moreover, 64 samples 
were eliminated from the data files since they failed the quality check (QC) of the data, 
and from further QC steps, three questionable subjects were also removed.

The final data set contained 744 samples with 49,386 probe sets. There are four 
classes in the data set, and the distribution is 260 Cognitively normal (CN), 215 Early 
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Mild Cognitive Impairment (EMCI), 226 Late Cognitive Impairment (LMCI), and 
43 Alzheimer’s Disease (AD). This data set is imbalanced. In this paper, we considered 
only the stable participants labeled AD or CN, and the participants in the transitional 
state (EMCI and LMCI) were removed from the data. 

4.1. Data Preprocessing

As a first step of data preprocessing, we decided to match each probe to individual 
genes, so we excluded certain probes from the data set that lacked associated gene 
annotations. The Affymetrix Human Genome 219 Plate annotation data (chip 
hgu219) was utilized to map the probes to ensemble IDs. Then Dropping genes in 
the bottom 10 percentile for over 80% of the samples. Furthermore, certain probes 
could be “promiscuous,” which means they detect many target sequences, which could 
produce false findings if collapsed into individual genes. Additionally, since a number 
of probes may represent certain genes, combining them into a single gene may result 
in the loss of data. In order to ensure a more comprehensive and correct study of gene 
expression patterns, we decided to evaluate the probe sets as they were marked in the 
original dataset. We will take the median of the gene expression values when multiple 
probes map to the same genes.

Due to the uneven nature of the ADNI dataset, the oversampling approach 
was used in the second stage to balance the data for each group, namely AD and 
CN. The SMOTE (Synthetic Minority Oversampling Technique) is employed in 
our study to make a balanced dataset. This interpolation method creates samples for 
underrepresented classes (Chawla, 2002). The over sampling SMOTE works by joining 
the minority class with its five nearest neighbors in high-dimensional space. We took 
the difference between a sample and one of its five closest neighbors, multiplied this 
difference by a chance number between 0 and 1, and then added it to the sample of 
the minority class. Hence, the SMOTE operates within the feature space by generating 
sample points as random points on lines within a high-dimensional space. We used the 
“DMwR” package in R for implementing SMOTE. The final data set was balanced by 
258 cases for each group, AD and CN, respectively.

The third step was selecting the differential expressed genes (DEGs) between 
AD and CN groups. To extract the DEGs from the microarray data, we utilized R’s 
“limma” package. Within the ‘limma’ package, the “lmFit” function is utilized to fit a 
linear regression model, enabling the estimation of gene-specific effects, and “eBayes” 
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function is based on the empirical Bayesian method moderate the standard error over 
genes to identify the DEGs for two groups (Smyth, 2004). We set the cutoff value for 
FDR 0.01 to identify the DEGs.

4.2. Exploratory Data Analysis

After the first step of data preprocessing, we got the microarray data set with 16,686 
genes. Further normalization is unnecessary since the ADNI microarray data has 
already been adjusted using log-scale transformation.

 
 Figure 4(a): Kernal Density Plot Figure 4(b): Volcano plot of DEg

To ensure the normalization of the data, Kernel Density Estimation (KDE) 
is employed, and a corresponding plot is provided (Fig:4(a)). The higher density 
corresponds to a peak point in the plot, suggesting that a certain range of gene expression 
values is common over the samples. The wider width of the curve indicates greater 
variability and may be subgroups or patterns that exist within the data. Identification 
of genes that caused higher variability can enhance the separation between classes (AD 
vs CN) while in classification. 

In order to find the differentially expressed genes (DEg) from the microarray data 
set, we will now employ the R tool Limma (Linear Models for Microarray Data). 
Finding the genes with distinct expression labels for the two classes, AD and CN, 
is the primary goal of DEg. Since our expression data are already preprocessed, we 
used a linear model function “lmFit()” from the limma package to compare groups. 
In the design arguments of the “lmFit” function, we specified our test of hypothesis. 
Then the “eBays” function in the limma package is used to improve the accuracy and 
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stability of statistical inference. Specifically, the “eBays” function borrows information 
across genes to obtain reliable and stable estimates of gene-specific variances. Since the 
limma runs many tests simultaneously (one for each gene), we employ the “Benjamini-
Hochberg” multiple correction approach to lower the false discovery rate (FDR) and 
get corrected p-values. The outcome provided by the limma package comprises lists of 
differentially expressed genes, accompanied by pertinent statistical details, including 
log-fold changes, p-values, and adjusted p-values. We used a volcano plot (Fig: 4(b)) to 
simultaneously visualize the statistical significance (P-value) and fold-changes of genes 
between two groups.

4.3. Feature Selection by BVS

Now we used the KM approach with a gamma prior in the variance component for 
selecting a small subset of genes from 1000 DEg’s. Thus, the data set is divided into 
training and testing portions in order to get a subset of genes while controlling the 
proportion of AD and CN in the two parts. We repeat this procedure several times. 
Then average inclusion probabilities for all genes are obtained. In this context, the 
computation of inclusion probability entails evaluating the percentage of posterior 
samples where a variable is included in the model. The Kuo-Mallick approach utilize 
the MCMC methods for drawing samples from the posterior distribution. By drawing 
a sample of model parameters from the joint posterior distribution of a specific model 
structure, the MCMC technique explores the entire space of possible models. The 
inclusion probability for a variable can be determined by calculating the percentage 
of MCMC samples that contain the variable. The median inclusion probability rule is 
used to include the probability in the model. This estimate of inclusion probability is 
an indication of the variable’s importance in the model. High inclusion probabilities 
are more likely to significantly impact the model’s prediction, while low inclusion 
probabilities indicate a lesser correlation with the response variable. The BVS approach 
is used to choose 66 features in total, and these features were then used in Logistic 
Regression and Random Forest classification algorithms.

5. Classification Techniques

A classification is a form of supervised learning in which the primary objective is 
constructing a model using a labeled training dataset. This study’s classification 
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approach aims to compare the effectiveness of a limited sample of genes chosen by 
BVS with entire DEG genes in classifying the two classes AD and CN. The number of 
features (genes) plays a significant role in classification. A small subset of genes decreases 
the analyzing complexity with time in identifying the biomarker and can reduce the 
model’s overfitting problem. We employed two distinct classifiers, logistic regression, 
and random forest to perform the classification task. The data sets are divided into 
training data and testing data. All machine learning algorithms would be trained by 
using the training data set.

To assess the effectiveness of these classification algorithms, two metrics would 
be calculated from testing data: the proportion of misclassification errors and the area 
under the receiver operating characteristic curve (AUC-ROC).

The penalized logistic regression (PLR) model is utilized in our study to classify 
individuals with Alzheimer’s disease based on their gene expression profiles. The 
motivation for using PLR is found in (Zhu & Hastie, 2004). The PLR can handle 
the situation where number of the predictors is greater than the sample size as well as 
can address the over-fitting issues while the logistic regression becomes unstable. By 
maximizing the likelihood function of the data and controlling the model complexity, 
PLR seeks to identify the ideal collection of genes. We used PLR in three different 
data sets for comparison purposes: full data set, top 1000 DEg, and genes selected by 
BVS. Misclassification errors from the testing data were 2.58%, 3.22%, and 9.03%, 
respectively, showing that while BVS selected fewer genes, these can provide further 
insight into potential biomarkers.

The Random Forest (RF) approach was used to build an ensemble of decision trees, 
which predicts clinical diagnosis by reducing overfitting through random sampling of 
training data. Similar to the PLR analysis, RF was applied to the same three data sets. 
Results indicated comparable misclassification errors across the full data set and the 
smaller subset of top genes, highlighting the model’s robustness.

Table: Classification Performance of Logistic Regression and Random  
Forest over different selected sets of features

Logistic Regression Random Forest 
Features(genes)

from
Miss-classification 

(%) 
AUC Miss-classification 

(%)
AUC

Full data set 2.58 0.9988 2.32 0.9985
Top DEG’s 3.22 0.9878 1.56 0.9984

BVS 9.03 0.9485 2.32 0.9981
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6. Conclusion

In this study, we employed Bayesian Variable Selection (BVS) with a spike-and-
slab approach, incorporating appropriate priors for variance components. Through 
real data analysis, we demonstrated that this method effectively identified the most 
relevant genes from the full dataset, providing a competitive solution for handling 
high-dimensional data. However, caution is necessary when generalizing the results, as 
we only considered a limited set of prior distributions for the variance components.A 
key finding was that a small subset of genes maintained comparable performance to 
the full set when used in machine learning models. This result aligns with the known 
equivalence between Bayesian and frequentist regularization methods, such as LASSO, 
in selecting important variables (Park & Casella, 2008). Unlike frequentist approaches, 
which rely on cross-validation to tune hyperparameters, the Bayesian method benefits 
from incorporating prior knowledge, making it advantageous in variable selection.

In summary, we can say BVS with spike-slab prior is a good alternative as a 
dimension reduction technique that deserves further investigation in the biostatistics 
domain. This spike slab prior specification enables the posterior distributions of zero 
coefficients to concentrate around the spike while non-zero coefficients remain in 
the slab. The most promising subset of predictors can be identified by analyzing this 
separation in the posterior distribution. We described the BVS approach in the ADNI 
gene expression data set to select a small subset of genes. In the AD disease diagnosis 
from a microarray data set, there are two main challenges: accurately predicting the 
disease class and identifying the key genes that are responsible for AD disease. The 
BVS approach effectively addressed these two challenges. These chosen genes were used 
to distinguish between AD and CN using following classifiers: Logistic Regression 
and Random Forest. The analysis of a small set of genes yielded a low percentage 
of misclassification and a higher AUC value, indicating improved performance and 
accuracy in the classification task with smaller features. 
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Appendix A

Table A.1: Performance of KM and SSVS in variable selection for different levels of sparsity, 
where n= sample size, p = mean (%) of covariates selected and nzc= means (%) of non-zero 

covariates selected in logistic regression

Covariates = 20 KM (n ≥ p)

True non-zero covariates
 nzc(%) 

Vague Gamma Cauchy

p(%) nzc(%) p(%) nzc(%) p(%) nzc(%)

n= 60 10.0 15.0 82.0 29.0 88.0 15.0 80.0

25.0 25.0 71.0 26.0 73.0 26.0 72.0

50.0 49.0 72.0 50.0 74.0 49.0 72.0

75.0 54.0 61.0 52.0 60.0 54.0 61.0

100.0 74.0 74.0 73.0 73.0 74.0 74.0

n=120 10.0 11.0 88.0 16.0 92.0 11.0 88.0

25.0 21.0 69.0 22.0 70.0 21.0 69.0

50.0 41.0 70.0 41.0 70.0 41.0 71.0

75.0 61.0 73.0 61.0 73.0 61.0 73.0

100.0 81.0 81.0 81.0 81.0 81.0 81.0

Covariates = 20 SSVS (n ≥ p)

True non-zero covariates
 nzc(%) 

Vague Gamma Cauchy

p(%) nzc(%) p(%) nzc(%) p(%) nzc(%)

n= 60 10.0 17.0 74.0 21.0 76.0 16.0 72.0

25.0 21.0 62.0 23.0 65.0 24.0 66.0

50.0 41.0 65.0 41.0 67.0 41.0 66.0

75.0 60.0 68.0 59.0 68.0 57.0 66.0

100.0 73.0 73.0 72.0 72.0 70.0 70.0

n=120 10.0 11.0 78.0 16.0 74.0 11.0 76.0

25.0 22.0 76.0 21.0 74.0 21.0 73.0

50.0 43.0 74.0 44.0 74.0 43.0 74.0

75.0 57.0 73.0 57.0 73.0 57.0 73.0

100.0 79.0 79.0 78.0 78.0 79.0 79.0
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Appendix B

Table A.2: Performance of KM and SSVS in variable selection when the number of covariates 
is greater than sample size in the sparse model, where n = sample size, p= mean (%) of covariates 

selected and nzc= means (%) of non-zero covariates selected in logistic regression

Covariates = 20 KM ( p≥ n)

True non-zero covariates
 nzc(%) 

Vague Gamma Cauchy

p(%) nzc(%) p(%) nzc(%) p(%) nzc(%)

Number of 
non-zeros 
covariates 

10

60 23.0 60.0 24.0 61.0 23.0 62.0

70 18.0 58.0 18.0 59.0 17.0 59.0

80 11.0 46.0 14.0 48.0 11.0 46.0

90 14.0 52.0 16.0 54.0 14.0 54.0

100 14.0 52.0 14.0 52.0 13.0 52.0

Number of 
non-zeros 
covariates 

20

60 31.0 52.0 30.0 50.0 32.0 53.0

70 36.0 57.0 37.0 57.0 35.0 56.0

80 29.0 47.0 29.0 48.0 28.0 47.0

90 26.0 47.0 26.0 47.0 23.0 45.0

100 26.0 47.0 29.0 50.0 25.0 48.0

Covariates = 20 SSVS (p ≥ n)

Number of covariates Vague Gamma Cauchy

p(%) nzc(%) p(%) nzc(%) p(%) nzc(%)

Number of 
non-zeros 
covariates 

10

60 22.0 57.0 23.0 62.0 24.0 58.0

70 18.0 55.0 21.0 58.0 17.0 55.0

80 12.0 43.0 16.0 48.0 12.0 45.0

90 14.0 49.0 17.0 50.0 14.0 49.0

100 16.32 52.0 17.0 49.0 16.0 52.0

Number of 
non-zeros 
covariates 

20

60 35.0 49.0 34.0 54.0 30.0 48.0

70 51.0 61.0 50.0 67.0 38.0 57.0

80 31.0 50.0 38.0 56.0 32.0 52.0

90 19.0 42.0 28.0 48.0 15.0 38.0

100 24.0 48.0 27.0 49.0 23.0 46.0


